A geometric version of the Morita equivalence
نویسندگان
چکیده
منابع مشابه
investigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
A characterization of Morita equivalence pairs
We characterize the pairs of operator spaces which occur as pairs of Morita equivalence bimodules between non-selfadjoint operator algebras in terms of the mutual relation between the spaces. We obtain a characterization of the operator spaces which are completely isometrically isomorphic to imprimitivity bimodules between some strongly Morita equivalent (in the sense of Rieffel) C*-algebras. A...
متن کاملNoncommutative fermions and Morita equivalence
We study the Morita equivalence for fermion theories on noncommutative two-tori. For rational values of the θ parameter (in appropriate units) we show the equivalence between an abelian noncommutative fermion theory and a nonabelian theory of twisted fermions on ordinary space. We study the chiral anomaly and compute the determinant of the Dirac operator in the dual theories showing that the Mo...
متن کاملMomentum Maps and Morita Equivalence
We introduce quasi-symplectic groupoids and explain their relation with momentum map theories. This approach enables us to unify into a single framework various momentum map theories, including ordinary Hamiltonian G-spaces, Lu’s momentum maps of Poisson group actions, and the group-valued momentum maps of Alekseev–Malkin–Meinrenken. More precisely, we carry out the following program: (1) We de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1991
ISSN: 0021-8693
DOI: 10.1016/0021-8693(91)90288-j